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Figure 1. Overlapping 
observations and fully-
distributed snow 
patterns from airborne 
lidar (option #1) and/or 
SWE reanalysis products 
(option #2) are used to 
extrapolate snow depth 
across a domain. 
Extrapolation 
performance is a 
function of both snow 
depth accuracy and the 
economic cost of the 
spatially-reduced 
observation (arrows).

Lidar-observed snow patterns with similar proximity to peak-SWE timing were persistent between 
snow seasons. In fact, the coefficient of correlation between snow patterns within approximately 
20 days of each other (with respect to peak-SWE timing) was greater than 0.70 (e.g., Figure 3). 
Performance was increased by excluding abnormally wet water-year 2017 and abnormally warm 
water-year 2015. 
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Snow distribution patterns are persistent from season to season at similar points in the snow 
season. Therefore, annual airborne lidar observations could be optimized to 1) decrease the 
economic cost of domain-wide snow depth determination, or 2) determine snow depths over 
larger domains. Therefore:
• Airborne lidar swaths should be flown in the direction of highest snow pattern variability at a 

time in the snow season that is similar to previous, fully-distributed lidar collections.
• Pairing pattern-assimilation with satellite-trained SWE reconstructions improves the 

derivation of domain-wide mean snow depth
• Snow patterns from only the SWE reconstruction product are preferable If patterns from fully-

distributed lidar observations are unavailable or poorly-timed.

Future snow campaigns should investigate snow-persistence and the applicability of this method 
in different snow regimes. While pattern-assimilation may reduce the cost of airborne lidar, we 
acknowledge that all airborne lidar collections are expensive. Therefore, the applicability of 
satellite-based snow depth observations should also be investigated (Figure 1).

Airborne lidar snow depth retrievals are vital for water resource in basins with limited snow 
observations. However, airborne lidar remains impractical to collect frequently over large 
domains due to the high economic cost. In this study, we used lidar observations of snow depth 
across seven snow seasons in Tuolumne, CA to determine how well snow depth from subsampled 
lidar swaths could be extrapolated using snow depth distribution patterns from: 1) fully-
distributed lidar observations in other snow seasons, 2) a satellite-trained SWE reconstruction 
product, and 3) the combination of the two. The framework (Figure 1) can be used to determine 
the extent of airborne lidar observations that are appropriate for any given basin, therefore 
optimizing snow-resource management.

Methodology
1. Airborne lidar observations (Painter et al., 2016) were subsampled to simulate flight swaths 

and satellite observations with various resolutions, spatial coverages, and orientations.
2. Snow pattern maps were created with fully-distributed datasets in other snow seasons using 

the standardized depth value (Sturm and Wagner, 2010),

SDVij =
depthij−depth

σdepth
. (1)

3. Using the linear relationship between any subsampled lidar observation and overlapping snow 
pattern (Figure 1), domain-wide mean snow depth and standard deviation were derived and 
used to calculate a domain-wide inferred snow depth map (Figure 2).

Figure 2. Pattern-extrapolation 
methodology. Overlapping observations 
and patterns (top row) were linearly-
regressed to determine the domain-
wide mean and standard deviation 
(Equation 1). Domain-wide snow depth 
was then extrapolated using the fully-
distributed snow pattern.

Snow pattern persistence

Swath observations in the direction of highest pattern variability outperformed random swath 
orientations. 

Using snow patterns defined by a fully-distributed lidar collection:
• The extrapolated snow depth coefficient of correlation was > 0.70 and biased by < 5% for 

swaths at similar times (within 20 days) in typical snow seasons.
• Extrapolation performance degraded as a function of observation-pattern mistiming as 

accumulation and melt patterns were superimposed to varying degrees.

Using snow patterns defined by SNSR distributed SWE from all other seasons:
• Extrapolated snow depth bias was reduced by 70%, on average, as compared to patterns from 

only a single distributed lidar observation.
• Snow patterns were too homogeneous and therefore increased mean absolute error.
• Patterns could be adjusted using a single, fully-distributed lidar observation. However, this 

adjustment was typically most-effective at times with similar proximity to peak-SWE timing.

Results

• Good representation of snow pattern 
heterogeneity

• Can be used to train model deposition/melt 
patterns

• Scalable to different resolutions

• Performance degrades for mistiming between 
the pattern and observation 

• Poor performance in abnormal snow seasons
• Economically expensive

• Good determination of basin-wide peak-SWE 
timing

• Decreased sensitivity to observation timing
• Economically cheap
• Can inform ideal observation locations

• Patterns are too homogeneous

• Can correct modeled pattern homogeneity
• Good determination of basin-wide peak-SWE 

timing
• Can inform ideal observation locations

• Pattern corrections are constrained to a 
similar time in the snow season

• Economically expensive+

Figure 5. Extrapolated snow depth coefficient of correlation (𝑟2), bias, and mean absolute 
error MAE for swaths covering < 5% of the domain flown on a variety of dates (rows), using 
different snow patterns (columns).
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Study domain

Figure 3. Upper-Tuolumne study domain. Terrain 
is represented by black contours with subdomains 
(Figure 4) indicated by symbols.
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Tests were performed across the upper-
Tuolumne watershed within Yosemite 
National Park, CA (Figure 3) where 48 
airborne lidar collections exist for seven 
snow seasons (WY2013-2019). This domain 
ranges between 700 – 3900 meters of 
elevation  with approximately 36% forest 
coverage. While figure 4 depicts results at 
100 m resolution across the entire domain, 
subdomains were also identified (Figure 3, 
symbols) to test snow-pattern persistence at 
25 m resolution for various types of terrain 
(Figure 4).

Figure 4.
Extrapolated 
depth map 
accuracy (bottom) 
provided a fully-
distributed lidar 
observation on 7 
April 2014 (blue 
line) and lidar 
swaths at all other 
times (x-axis). 
Mid-elevation 
snow pillow data 
is provided for 
reference (top).

Table 1. Advantages and disadvantages of various snow-pattern data sources.
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